2. Graphical Transformations of Functions

In this section we will discuss how the graph of a function may be transformed
either by shifting, stretching or compressing, or reflection. In this section let c be
a positive real number.

Vertical Translations

A shift may be referred to as a translation. If ¢ is added to the function, where the
function becomes y = f(x) + c, then the graph of f(x) will vertically shift
upward by c units. If c is subtracted from the function, where the function

becomes y = f(x)- c, then the graph of f(x) will vertically shift downward by ¢
units. In general, a vertical translation means that every point (X, y) on the graph
of f(x) is transformed to (X, y + ) or (X, y —c) on the graphs of y = f(x) 4+ c or
y = f(x)- c respectively.
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Horizontal Translations

If ¢ is added to the variable of the function, where the function becomes y =
f(x + c), then the graph of f(x) will horizontally shift to the left c units. If c is
subtracted from the variable of the function, where the function becomes y =
f(x - c), then the graph of f(x) will horizontally shift to the right c units. In
general, a horizontal translation means that every point (X, y) on the graph of
f(x) is transformed to (x — ¢, y) or (x + ¢, y) on the graphs of y = f(x + ¢) or

y = f(x - c) respectively.
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Reflection
If the function or the variable of the function is multiplied by -1, the graph of the
function will undergo a reflection. When the function is multiplied by -1 where

y = f(x) becomes y = - f(x), the graph of y = f(x) is reflected across the x-
axis.
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On the other hand, if the variable is multiplied by -1, where y = f(x) becomes
y = f(—x), the graph of y = f(x) is reflected across the y-axis.
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Vertical Stretching and Shrinking

If ¢ is multiplied to the function then the graph of the function will undergo a
vertical stretching or compression. So when the function becomes y = ¢f(x) and
0 < ¢ < 1, a vertical shrinking of the graph of y = f(x) will occur. Graphically,
a vertical shrinking pulls the graph of y = f(x) toward the x-axis. When ¢ > 1 in
the function y = cf(x), a vertical stretching of the graph of y = f(x) will occur.
A vertical stretching pushes the graph of y = f(x) away from the x-axis. In
general, a vertical stretching or shrinking means that every point (x, y) on the
graph of f(x) is transformed to (x, cy) on the graph of y = cf (x).
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Horizontal Stretching and Shrinking

If ¢ is multiplied to the variable of the function then the graph of the function will
undergo a horizontal stretching or compression. So when the function becomes

y = f(cx) and 0 < ¢ < 1, a horizontal stretching of the graph of y = f(x) will
occur. Graphically, a vertical stretching pulls the graph of y = f(x) away from
the y-axis. When ¢ > 1 in the function y = f(cx), a horizontal shrinking of the
graph of y = f(x) will occur. A horizontal shrinking pushes the graph of

y = f(x) toward the y-axis. In general, a horizontal stretching or shrinking means
that every point (X, y) on the graph of f(x) is transformed to (x/c, y) on the graph

of y = f(cx).
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Transformations can be combined within the same function so that one graph can
be shifted, stretched, and reflected. If a function contains more than one
transformation it may be graphed using the following procedure:

Steps for Multiple Transformations

Use the following order to graph a function involving more than one transformation:

1. Horizontal Translation
2. Stretching or shrinking
3. Reflecting
4

. Vertical Translation

Examples: Graph the following functions and state their domain and range:
1. fx)=(x+2)?%-3
basic function (b.f.) = x2, <2, | 3
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2. fx)=—|x-3|+1

b.f. = |x|, — 3, reflect about x-axis, 1 1
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3. f(x)=—-2vx+3+1

b.f. =/x, « 3, stretch about y-axis (c = 2), reflect about x-axis, 1 1
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4. f(x)=(-2x+1)3-2

b.f. = x3, « 1, shrink about x-axis (c = 2), reflect about y-axis, | 2
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5. Let the graph of f(x) be the following:

= -
)—'— }
4__
3__
.
l__
X
L L L L L L L L 'Y
|G L} T T 1§ T T 1 =
5 4 Wl 1 2 3 4 5
1+
24
3+
__‘__
54

Graph the following problems:
a. f(x)—3
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