- *Instructions:* Create a scatter plot, find the linear regression equation (line of best fit), determine the correlation, and then make a prediction.
- 1. The table below gives the amount of time students in a class studied for a test and their test scores. Graph the data on a scatter plot, find the line of best fit, and write the equation for the line you draw.

Hours Studied	1	0	3	1.5	2.75	1	0.5	2	
Test Score	78	75	90	89	97	85	81	80	
Linear Regression	Equatio	n:	=5	.43>	<u> </u>	167	11		
Correlation Coeff	icient (r)	:_ <u>()</u> _	. 4						
					лΧ				
Using the linear re a students test sc	-	-			\sum_{n}	7			
$\langle \rangle$	5.4	5(4	l)+	76	.41		99	34	est s
\= \	48	5.12	>				·		

2. The table below gives the amount of Krabby Patties made by Spongebob for each year he's worked. Graph the data on a scatter plot, find the line of best fit, and write the equation for the line you draw.

Years worked	1	2	3	4	5	6
Patties made	6,500	7,805	10,835	11,230	15,870	16,387

Linear Regression Equation:	1-2115×+4035.33
Correlation Coefficient (r):	.98

Using the linear regression equation predict how many Krabby Patties he will make after

X = 2115(10) + 4035.33 V = 25,185.33 (25,185 KP working 10 years.

3. The table below gives the estimated world population (in billions) for various years.

Year	1980	1990	1997	2000	2005	2011		
Population	4400 5100		5852	6080	6450	7000		
Linear Regression Equation: $1 = 84.91 \times -163766$								
Correlation Coefficient (r): <u>6,99</u> 8								

Using the linear regression equation predict the world population in the year 2015. (2015) - 163766 , 65 [billions of people

4. The table below shows the income for an employee over his first 8 years of work. Use this to estimate his income for his 15th year of work.

Years	1	2	3	4	5	6	7	8	
Income 45,000 46,814 48,212 52,870 54,125 58,532 61,075 62,785							62,785		
Linear Regression Equation: $1 = 2714.46 \times 141461.5$ Correlation Coefficient (r): 0,992									

Using the linear regression equation predict

