Linear Regression - Predictions
Instructions: Create a scatter plot, find the linear regression equation (line of best fit), determine the correlation, and then make a prediction.

1. The table below gives the amount of time students in a class studied for a test and their test scores. Graph the data on a scatter plot, find the line of best fit, and write the equation for the line you draw.

Hours Studied	1	0	3	1.5	2.75	1	0.5	2
Test Score	78	75	90	89	97	85	81	80

Linear Regression Equation:

Correlation Coefficient (r):

Using the linear regression equation predict $フ 7 \times$ a students test score if they studied for 4 hours.

$$
\begin{aligned}
& y=5.43(4)+76.41 \\
& y=98.13
\end{aligned}
$$

98 test score
2. The table below gives the amount of Krabby Patties made by Spongebob for each year he's worked.

Graph the data on a scatter plot, find the line of best fit, and write the equation for the line you draw.

Years worked	1	2	3	4	5	6
Patties made	6,500	7,805	10,835	11,230	15,870	16,387

Unease eesessos Equation $y=2115 x+4035.33$

Using the linear regression equation predict how many Krabby Patties he will make after working 0 years.

$$
\begin{aligned}
& y=2115(10)+4035.33 \\
& y=25,185.33 \quad 25,185 \mathrm{kP}
\end{aligned}
$$

3. The table below gives the estimated world population (in billions) for various years.

Year	1980	1990	1997	2000	2005	2011
Population	4400	5100	5852	6080	6450	7000

Linear Regression Equation:

$$
y=8491 x-163766
$$

Correlation Coefficient (r):

Using the linear regression equation predict the world population in the year 2015.

$$
\begin{aligned}
& y=84.91(2015)-163766 \\
& y=7327.65 \text { billions of people }
\end{aligned}
$$

4. The table below shows the income for an employee over his first 8 years of work. Use this to estimate his income for his 15th year of work.

Years	1	2	3	4	5	6	7	8
Income	45,000	46,814	48,212	52,870	54,125	58,532	61,075	62,785

Lneareferessonofavion: $y=2714.46 x+41461.5$
Correlation Coefficient (r): 0.992

Using the linear regression_equation predict his income for his $15^{\text {th }}$ year of work.

$$
\begin{aligned}
& y=2714.46(15)+41461.5 \\
& y=\$ 82178.40
\end{aligned}
$$

