See ANSWERS below on page 2.

For each quadratic equation, identify the x-intercept, y-intercept, axis of symmetry, vertex, and sketch a graph of the parabola.

1. $f(x)=x^{2}-6 x+8$
2. $f(x)=2 x^{2}-8 x-10$
3. $f(x)=x^{2}-4 x-12$
4. $f(x)=x^{2}+6 x$
5. $f(x)=-x^{2}+2 x-2$
6. $f(x)=-4 x^{2}+8 x-3$

Write the equation of the parabola in standard form given the following conditions.
7. Passes through the points $(-1,0)(3,0)$ and $(0,-3)$.
8. Passes through the points $(-4,0)(-2,0)$ and $(-6,8)$.
9. Has x-intercepts of -2 and 2 and passes through the point $(0,3)$.

Answers:

1.

x -intercept: $(4,0)(2,0)$		
y -intercept: $(0,8)$		
Axis of symmetry: $\mathrm{x}=3$		
Vertex: $(3,-1)$		

2.

x -intercept: $(-1,0)(5,0)$		
y-intercept: $(0,-10)$		
Axis of symmetry: $\mathrm{x}=2$		
Vertex: $(2,-18)$		

3.

x-intercept: $(6,0)(-2,0)$
y-intercept: $(0,-12)$
Axis of symmetry: $x=2$
Vertex: $(2,-16)$

4.

x-intercept: $(0,0)(-6,0)$
y-intercept: $(0,0)$
Axis of symmetry: $x=-3$
Vertex: $(-3,-9)$

5.

x -intercept: none	
y -intercept: $(0,-2)$	
Axis of symmetry: $\mathrm{x}=1$	
Vertex: $(1,-1)$	

6.

x-intercept: $(1 / 2,0)(3 / 2,0)$
y-intercept: $(0,-3)$
Axis of symmetry: $x=1$
Vertex: $(1,1)$

$$
\begin{array}{cc}
\begin{array}{ll}
7 . y=x^{2}-2 x-3 & x-i n+s \\
y=a(x+1)(x-3) & (310), p+(0,-3) \\
-3=a(0+1)(0-3) & y=(x+1)(x-3) \\
\frac{-3}{-3}=-\frac{8 a}{-3} \quad a=1 & y=x^{2}-3 x+x-3 \\
8 . y=x^{2}+6 x+8 & \left.y=x^{2}-2 x-3\right] \\
x-i n+(-4,0)(-2,0) & p+:(-6,8) \\
y=a(x+4)(x+2) & y=(x+4)(x+2) \\
8=a(-6+4)(-6+2) & y=x^{2}+2 x+4 x+8 \\
\frac{8}{8}=\frac{8 a}{8} \quad a=1 & y=x^{2}+6 x+8 \\
9 . y=-3 / 4 x^{2}+3 & y \\
x-3+-2,2 & p+(0,3) \\
y=a(x+2)(x-2) & y=-\frac{3}{4}(x+2)(x-2) \\
3=a(0+2)(0-2) & y=-\frac{3}{4}\left(x^{2}-2 x+2 x-4\right) \\
\frac{3}{-4}=-\frac{49}{-4} & y=-\frac{3}{4}\left(x^{2}-4\right) \\
& y=-\frac{3}{4} x^{2}+3
\end{array}
\end{array}
$$

