Use desmos to graph the functions to help yod answer the Q's.

See ANSWERS below on page 2.

1. Timmy threw a rock off of a cliff. The path of the rock can be modeled by the equation $y=-16 x^{2}+16 x$ +480 , where x is the time in seconds and y is the height of the rock in feet.
a. How long does it take the rock to reach its maximum height?

x-value max (veter)

b. What is the maximum height?

-value vertex

2. A rocket follows the path $y=-16 x^{2}+128 x$, where x is the time in seconds and y is the height in $f t$.
a. How long does it take for the rocket to reach its maximum height?
b. What is the maximum height?
3. You are trying to dunk a basketball. You need to jump 2.5 feet in the air in order to do so. The height of your feet above the ground can be represented by the equation $y=-16 x^{2}+12 x$.
a. What is the maximum height your feet will be above the ground?
b. Will you be able to dunk the basketball? is Y-value greater than 2.5 ft ?
4. The profit of an independent film can be modeled by the equation $p=-.02 x^{2}+3.4 x-16$, where x is the number of DVDs sold (in thousands) and p is the profit (in thousands of dollars)
a. How many DVDs should the company produce to maximize the profit?
b. What will the maximum profit be?
5. Assume that a water balloon is launched with a catapult and its path can be modeled with the equation $h=-16 t^{2}+50 t+20$.
a. How long will the water balloon be in the air?

x-int to x-int distance

b. What is the maximum height of the water balloon?

Answers:

1. a. 0.5 sec, b. 484 ft
2. a. 4 sec, b. 256 ft
3. a. 0.375 sec, b. no
4. a. 85 thousand, b. $\$ 128.5$ thousand
5. a. $3.46 \mathrm{sec}, \mathrm{b} .59 .06 \mathrm{ft}$
