See ANSWERS below on PAGE 3

Match each graph to its equation for problems 1-5.

- 1) y = -2x + 5
- 2) $y = -5 \frac{1}{2}x$
- 3) $y = \frac{1}{2}x + 5$
- 4) $y = 5(1/2)^x$
- 5) x + 5y = -10

- 6) Find the value of each if $g(t) = 10(1.8)^x$
 - a) g(4) b) g(0) c) g(-1)

7) Using the two graphs below. What is the difference in their y-intercepts between graph 1 and graph 2?

Create an equation for the following problems, then answer the question asked.

8) A cable company charges \$50 for the setup fee and \$148 a month for service. If a customer signed a 2 year contract, how much total would he have to pay to this company?

9) Andrew bought a car that costs \$24,000. If the car depreciates linearly each year by \$400, then how many years will it take for the car to be less than 1/2 of its original value?

Answers:
1.(
$$\odot$$
) Y-1NH = 5 slope = -2
2.(\times) Y-1NH = 5 slope = -1/2 Y= -2×H5
3.(\odot) Y-1NH = 5 slope = -1/2 Y= -5-1/2×
3.(\odot) Y-1NH = 5 y= 1/2×H5
slope = 1/2 Y= 1/2×H5
4.(\odot) exponential function Y-int=initial value = 5
(\odot) exponential function Y-int=initial value = 5
(\odot) X+5y=-10 y= - $\frac{1}{5}$ × -2 Y-1H=-2
(\odot) X+5y=-10 y= - $\frac{1}{5}$ × -2 Slope = -1/5
6. a. 104.976, b. 10%. 5.556
5.(\odot) X+5y=-10 b) g.(\odot) = 10(1.8) = 100
(\odot) g.(+) = 10(1.8) + $\frac{104.976}{104.976}$ b) g.(\odot) = 10(1.8) = $\frac{100}{150}$
(\odot) g.(+) = 10(1.8) + $\frac{104.976}{104.976}$ b) g.(\odot) = 10(1.8) = $\frac{100}{150}$
7. 155
($\operatorname{araph 1}$ Y-int = -5 ($\operatorname{araph 2}$ Y-int = 150
150--5 = $\frac{1551}{155}$
3. y= -480x + 50: 53802
initial schup charge = 50 (Y-int)
\$148 | month = $\frac{1}{500}$
 $Y = 148(x+5) = \frac{1}{300}$
(ares + $\frac{1}{4000}$ + $\frac{1}{2}$ + $\frac{1}{400}$ + $\frac{1}{31}$ + $\frac{1}{50}$
(ares + $\frac{1}{4000}$ + $\frac{1}{2}$ + $\frac{1}{400}$ + $\frac{1}{400}$ + $\frac{1}{2}$ + $\frac{1}{400}$ + $\frac{1}{40$