Find the answers to the practice assignment on PAGE 3 below.
Fill in the blanks with the appropriate word(s):

1. A \qquad triangle has no equal sides.
2. An \qquad triangle has 2 equal sides.
3. An \qquad triangle has 3 equal sides.
4. The sum of the three angles in a triangle is always \qquad degrees.
5. The congruent sides in an isosceles triangle are called the \qquad . The third side is called the
\qquad .
6. The congruent angles in an isosceles triangle are called the \qquad angles. The third angle is called the \qquad .
7. You can use the \qquad to find the missing side of a right triangle. The formula is \qquad where a and b are the \qquad and c is the \qquad .
8. The hypotenuse is the \qquad side of a right triangle. It is always the side across from the
\qquad
\qquad _.

Problems:

9. A triangle has angles that measure $85^{\circ}, 46^{\circ}$, and $(9+4 x)^{0}$. Solve for x.
10. Triangle $A B C$ has angles $A=(x+49), B=(x+77)$, and $C=74$. Find the measure of angle A.
11. An angle of an equilateral triangle can be expressed as $(9 x+6)$. Find x.
12. The base angles of an isosceles triangle are represented by $(5 x+10)$ and 50°. Find x.
13. A base angle of an isosceles triangle measures 65 degrees and the vertex can be represented by ($x+$ 59). Find x.
14. Find x .

15. A right triangle has legs measuring 12 and 16 . Find the length of the hypotenuse.
16. A right triangle has a leg measuring 10 and a hypotenuse of 26 . Find the length of the other leg.
17. Solve for x.

18. An equilateral triangle has a perimeter of 21 and a side length of $2 x+3$. Find x.
19. An isosceles triangle has a perimeter of 23 and a base with length 9 . Find the length of each leg.

Answers:

1. scalene
2. isosceles
3. equilateral
4. 180
5. legs; base
6. base; vertex
7. Pythagorean Theorem; $a^{2}+b^{2}=c^{2}$; legs; hypotenuse
8. longest; right angle

$$
\begin{aligned}
& 9 . x=10 \quad 85+46+9+4 x=180^{\circ} \\
& 140+4 x=180 \\
&-140 \quad-140 \\
& \frac{4 x}{4}=\frac{40}{4} \quad x=10
\end{aligned}
$$

10. $A=39$
11. $x=6$

$$
\begin{array}{rlrl}
m \angle A+m \angle B+m \angle C=180 & m \angle A & =x+4 \\
x+49+x+77+74=180 & & =-10+ \\
2 x+200=180 \\
-2000 & & =300 \\
\frac{2 x}{2}=-\frac{20}{2} & & &
\end{array}
$$

Th an equilateral Δ, all angles $9 x+6=60$ measure 60°

$$
\frac{9 x=54}{9} x=x=6
$$

12. $x=8$
base angles are congruent (equal)

$$
\begin{aligned}
& 5 x+10=50 \\
& -10-10 \\
& \frac{5 x}{5}=\frac{40}{5} x=8
\end{aligned}
$$

13. $x=-9$
base $\angle+$ base $\angle+$ vertex $\angle=180^{\circ}$

$$
\begin{gathered}
65+65+x+59=180 \\
x+189=180 \\
-189-189 \\
x=-9
\end{gathered}
$$

$$
\begin{aligned}
& \text {, } 1 . \times 3 \\
& \begin{array}{l}
4 x+1=6 x-5 \\
-4 x=-4 x-5 \\
1+5=2 x+5
\end{array} \quad\left\{\begin{array}{l}
\frac{6}{2}=\frac{2 x}{2} \\
3=x
\end{array}\right. \\
& \overbrace{16.24}^{15} \text { ? } \\
& 12^{2}+16^{2}=c^{2} \\
& 10 \int_{b}^{26} \\
& \begin{array}{l}
12^{2}+16^{2}=c^{2} \\
144+256=c^{2} \quad c=20 \\
1400=11^{2}
\end{array} \\
& \begin{array}{ll}
10^{2}+b^{2} & =26^{2} \\
100+b^{2} & =676 \\
-100 & \quad b=24
\end{array} \\
& \text { 17.x=55 } \\
& x+70=125 \\
& -70 \\
& x=55
\end{aligned}
$$

${ }^{18 . x=2}$ Equilateral Δ all sides equal Perimeter $=21$

$$
\begin{array}{ll}
3(2 x+3)=21 \\
6 x+9=21 & x=2
\end{array}
$$

19. $x=7$

$$
\begin{aligned}
& x x=\frac{12}{6} \\
& x+x+9=23 \\
& 2 x+9=23 \\
& -9=\frac{14}{2} \\
& \frac{2 x}{2} \\
& x=7
\end{aligned}
$$

