See ANSWERS below on PAGE 3.

1. A figure is reflected across the y-axis. The image is then reflected across the x-axis. Which single transformation is equivalent to the composite transformation?
2. A figure is reflected over the y-axis. The image is then reflected across $y=-x$. Which single transformation is equivalent to the composite transformation?
3. A figure is translated left 2 and up 3 units. The image is then translated left 7 and down 5 units. Which single transformation is equivalent to the composite transformation?
4. A figure is translated right 3 and down 9 units. The image is then translated left 4 and up 3 units. Which single transformation is equivalent to the composite transformation?
5. A figure is rotated 90 degrees. The image is then rotated 180 degrees. Which single transformation is equivalent to the composite transformation?
6. A figure is rotated 180 degrees. The image is then rotated 270 degrees. Which single transformation is equivalent to the composite transformation?
7. A figure is reflected across the line $y=x$. The image is then reflected across the x-axis. Which single transformation is equivalent to the composite transformation?
8. A transformation is shown below

Segment $A^{\prime} B^{\prime}$ is reflected across the line $y=-x$. What transformation will carry segment $A B$ onto segment A"B"?
9. A $r_{x-a x i s} \circ r_{y=-x}$.
9. A figure is transformed by the rule . What single transformation is equivalent to the composite transformation?
10. Point $X(3,5)$ is reflected across the line $y=1$ and then across the line $y=-3$. What single transformation will carry $\mathrm{X}^{\prime \prime}$ onto X ?
11. Point $\mathrm{M}(-3,8)$ is reflected across the line $\mathrm{x}=3$ and then across the line $\mathrm{x}=-2$. What are the coordinates of $\mathrm{M}^{\prime \prime}$? What single transformation is equivalent to the composition transformation?
12. Point $R(-4,2)$ is reflected across the line $y=3$ and then across the line $y=1$. What single transformation will carry R onto R"?
13. A figure is transformed by the rule $r_{y \text {-axis }} \circ R_{270^{\circ}}$. What single transformation is equivalent to the composite transformation?

Answer Key: Feel free to graph a point to help you!

> 1. rotate 180 degrees centered at the origin
> Reflect y then Reflect x
> $(-x, y) \rightarrow(-x,-y)$
2. rotate 90 degrees centered at the origin

Reflect y then Reflect $y=-x$
$(-x, y) \rightarrow(-y, x)$
3. translate left 9 and down 2

Translate $(x-2, y+3)$ then Translate $(x-7, y-5)$
(x-9, y-2)
4. translate left 1 and down 6

Translate $(x+3, y-9)$ then Translate $(x-4, y+3)$
$(x-1, y-6)$
5. rotate 270 degrees centered at the origin

Rotate 90 then Rotate 180
$(-y, x) \rightarrow(y,-x)$
6. rotate 90 degrees centered at the origin

Rotate 180 then Rotate 270
$(-x,-y) \rightarrow(-y, x)$
7. rotate 270 degrees centered at the origin

Reflect $\mathrm{y}=\mathrm{x}$ then Reflect x
$(y, x) \rightarrow(y,-x)$
8. rotate 270 degrees centered at the origin

Reflect x then Reflect $y=-x$
$(x,-y) \rightarrow(y,-x)$
9. rotate 90 degrees centered at the origin

Reflect $y=-x$ then Reflect x
$(-y,-x) \rightarrow(-y, x)$
10. translate up 8 units

$$
x^{\prime \prime} \rightarrow x
$$

11. $M^{\prime \prime}=(-13,8)$; translate left 10 units
12. translate up 4

$$
R \rightarrow R
$$

13. reflect across the line $y=-x$

Rotate 270 then Reflect y
$(y,-x) \rightarrow(-y,-x)$

