See ANSWERS below on PAGE 3.

1. A figure is reflected across the line $y=x$. The image is then reflected across the y-axis. Which single transformation is equivalent to the composite transformation?
2. A figure is reflected over the x-axis. The image is then reflected across $y=-x$. Which single transformation is equivalent to the composite transformation?
3. A figure is translated right 4 and down 6 . The image is then translated left 2 and up 4 . Which single transformation is equivalent to the composite transformation?
4. A figure is translated down 2 and right 6 . The image is then translated up 5 units and left 1 . Which single transformation is equivalent to the composite transformation?
5. A figure is rotated 270 degrees. The image is then rotated 180 degrees. Which single transformation is equivalent to the composite transformation?
6. A transformation is shown below

Segment A'B' is reflected across the line $y=x$. What transformation will carry segment $A B$ onto segment A"B"?
7. A figure is transformed by the rule $R_{180^{\circ}} \circ r_{y \text {-axis }}$. What single transformation is equivalent to the composite transformation?

8. A transformation is shown below

Triangle $A^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$ is reflected across the x -axis. Which transformation will carry triangle ABC onto triangle $\mathrm{A}^{\prime \prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$?
9. Point $\mathrm{H}(-2,6)$ is reflected across the line $\mathrm{y}=2$ and then across the line $\mathrm{y}=-4$. What single transformation will carry $\mathrm{H}^{\prime \prime}$ onto H ?
10. Point $\mathrm{P}(7,1)$ is reflected across the line $\mathrm{x}=-4$ and then across the line $\mathrm{x}=1$. What are the coordinates of P "? What single transformation is equivalent to the composition transformation?
11. Point $T(4,-5)$ is reflected across the line $y=-4$ and then across the line $y=2$. What single transformation will carry T onto $\mathrm{T}^{\prime \prime}$?

Answer Key (answers in red)

1. rotate 90 degrees centered at the origin

Reflect $y=x$ then Reflect y
$(y, x) \rightarrow(-y, x)$
2. rotate 270 degrees centered at the origin

Reflect x then Reflect $y=-x$
($x,-y$) $\rightarrow(y,-x)$
3. translate right 2 and down 2

Translate $(x+4, y-6)$ then Translate $(x-2, y+4)$
($x+2, y-2$)
4. translate right 5 and up 3

Translate $(x+6, y-2)$ then Translate $(x-1, y+5)$
$(x+5, y+3)$
5. rotate 90 degrees centered at the origin

Rotate 270 then Rotate 180
$(y,-x) \rightarrow(-y, x)$
6. rotate 90 degrees centered at the origin

Reflect x then Reflect $y=x$
$(x,-y) \rightarrow(-y, x)$
7. reflect across the x-axis

Reflect y then Rotate 180
$(-x, y) \rightarrow(x,-y)$
8. reflect across the y-axis

Rotate 180 then Reflect x
$(-x,-y) \rightarrow(-x, y)$
9. translate up 12 units

10. translate right units
$\because \| P$
11. translate up 12 units

