## See ANSWERS below.

Write rules representing the following:

1. $r_{y=x} \circ T_{4,-2}$
2. $T_{-3,4} \circ R_{270^{\circ}}$
3. $r_{y-a x i s} \circ R_{180^{\circ}}$

Write the rules that represent the composite transformations given below:
4. rotate 90 degrees about the origin, then reflect over the line $y=-x$
5. translate up 8 and left 6 units, then dilate with a scale factor of $1 / 2$ centered at the origin
6. reflect over the x-axis, then translate up 3 units

Given the rule, describe the composition (in words) and give the composition notation that describes the composite transformations below:
7. $(x, y) \longrightarrow(-(x+3),(y+4))$
8. $(x, y) \longrightarrow(-(y-9),(x+2))$
9. $(x, y) \longrightarrow(-(y-1),-x)$
10. $(x, y) \longrightarrow(x-9,-(y+3))$

Answers in red.

1. Translate right 4 and down 2 , followed by a reflection over the line $y=x$.
2. Rotate 270 degrees centered at the origin, followed by a translation left 3 and up 4.
3. Rotate 180 degrees centered at the origin, followed by a reflection over the $y$-axis.
4. $(x, y) \rightarrow(-x, y)$

Rotate 90 then Reflect $y=-x$
$(-y, x) \rightarrow(-x, y)$
5. $(x, y) \rightarrow(1 / 2 x-3,1 / 2 y+4)$

Translate $(x-6, y+8)$ then Dilate $1 / 2$
$(x-6, y+8) \rightarrow(1 / 2(x-6), 1 / 2(y+8)) \rightarrow(1 / 2 x-3,1 / 2 y+4)$
6. $(x, y) \rightarrow(x,-y+3)$

Reflect $x$ then Translate ( $x, y+3$ )
$(x,-y) \rightarrow(x,-y+3)$
7. Translate right 3 and up 4, followed by a reflection over the $y$-axis
$r_{y \text {-axis }} O T_{3,4}$
8. Translate right 2 and down 9, followed by a 90 degree rotation centered at the origin

$$
R_{90 \text { degrees }} \circ T_{2,-9}
$$

9. Translate down 1, followed by a reflection over the line $y=-x$

$$
\mathrm{r}_{\mathrm{y}=-\mathrm{x}} \circ \mathrm{~T}_{0,-1}
$$

10. Translate left 9 and up 3 , followed by a reflection over the $x$-axis

$$
r_{x-a x i s} \circ \mathrm{~T}_{-9,3}
$$

