Write rules representing the following:

1. $r_{x-a x i s} \circ T_{-3,1}$
2. $R_{90^{\circ}} \circ r_{y=x}$
3. $r_{x-a x i s} \circ r_{y=a x i s}$
4. $T_{5,-2} \circ R_{180^{\circ}}$
5. $R_{270^{\circ}} \circ r_{y \text {-axis }}$

Write the rules that represent the composite transformations given below:
6. translate left 2 units, then reflect over the x-axis
7. rotate 90 degrees, then translate up 4 units
8. reflect over the line $y=x$, then rotate 180 degrees
9. translate down 3 and right 5 units, then reflect over the y-axis
10. translate 2 units up and 1 unit left, then dilate with a scale factor of 2 centered at the origin

Given the rule, describe the composition (in words) and give the composition notation that describes the composite transformations below:
11. $(x, y) \longrightarrow(-(x+2),(y-3))$
12. $(x, y) \longrightarrow(-(y+5),(x+8))$
13. $(x, y) \longrightarrow(-(x+7),-y)$
14. If the domain of the coordinate transformation $f(x, y)=(3 y-6,3 x+4)$ is $(3,-2)$, $(-4,5)$, and $(2,0)$, what is the range?
15. If the range of the coordinate transformation $f(x, y)=(-x+3, y+2)$ is $(7,2),(-4,8)$, and ($5,-6$), what is the domain?

Answer Key:

1. $(x, y) \longrightarrow(x-3, y+1) \rightarrow(x-3,-(y+1))$
2. $(\mathrm{x}, \mathrm{y}) \longrightarrow(\mathrm{y}, \mathrm{x}) \rightarrow(-\mathrm{x}, \mathrm{y})$
3. $(x, y) \longrightarrow(-x, y) \rightarrow(-x,-y)$
4. $(\mathrm{x}, \mathrm{y}) \longrightarrow(-\mathrm{x},-\mathrm{y}) \rightarrow(-\mathrm{x}+5,-\mathrm{y}-2)$
5. $(\mathrm{x}, \mathrm{y}) \longrightarrow(-\mathrm{x}, \mathrm{y}) \rightarrow(\mathrm{y}, \mathrm{x})$
6. $(\mathrm{x}, \mathrm{y}) \longrightarrow(\mathrm{x}-2, \mathrm{y}) \rightarrow(\mathrm{x}-2,-\mathrm{y})$
7. $(x, y) \longrightarrow(-y, x) \rightarrow(-y, x+4)$
8. $(x, y) \longrightarrow(y, x) \rightarrow(-y,-x)$
9. $(x, y) \longrightarrow(x+5, y-3) \rightarrow(-(x+5), y-3)$
10. $(\mathrm{x}, \mathrm{y}) \longrightarrow(\mathrm{x}-1, \mathrm{y}+2) \rightarrow(2(\mathrm{x}-1), 2(\mathrm{y}+2) \rightarrow(2 \mathrm{x}-2,2 \mathrm{y}+4)$
11. translate right 2 and down 3 , followed by a reflection across the y-axis

$$
r_{y-\text { axis }} \text { o } T_{2,-3}
$$

12. translate right 8 and up 5 , followed by a rotation of 90 degrees centered at the origin

$$
\mathrm{R}_{90} \text { degrees } \circ \mathrm{T}_{8,5}
$$

13. translate right 7 , followed by a rotation of 180 degrees centered at the origin

$$
\mathrm{R}_{180 \text { degrees }} \mathrm{o} \mathrm{~T}_{7,0}
$$

