Go to page $\mathbf{2}$ for the SOLUTIONS to the Homework. Make sure you check your work.

For questions 1-7, use the following transformations with each question:

- 90 degree rotation
- 180 degree rotation
- 270 degree rotation

1. What is the image of $A(-1,5)$?
2. What is the image of A^{\prime} ?
3. What is the preimage of $D^{\prime}(15,-3)$?
4. What is the image of $B(2 a, 3 b)$?
5. What is the image of $F(x-5,2 y-8)$?
6. What is the preimage of $\mathrm{G}(\mathrm{a}, 4 \mathrm{~b})$?
7. What is the preimage of $C(3 x-12,-y-2)$?

Use the figure below to answer each question.

1. Write a rule that would map $\triangle A B C$ onto $\triangle A^{\prime} B^{\prime} C^{\prime}$.
2. What transformation is represented? List another transformation that would yield the same result.

$$
\begin{aligned}
& B(2 a, 3 b) \rightarrow B^{\prime}(3 b-2 a)
\end{aligned}
$$

$$
\begin{aligned}
& \left.F(x-5,2 y-8) \frac{-1}{2}+(2 y-8), x-5\right) \rightarrow F^{\prime}(-2 y+8, x-5)
\end{aligned}
$$

$$
\begin{aligned}
& F(x-27,2 y-8) \rightarrow F^{c}(2 y-8,-(x-5)) \rightarrow F^{\prime}(2 y-8,-x+5) \\
& \begin{array}{l}
\text { 6. What is the preimage of } G^{\prime}(a, 4 b) \text { ? } \\
\text { a. } 90 \text { degre rotation } G(4 b,-a) \text { ? }
\end{array} \\
& G^{\prime}(a, 4 b) \rightarrow G(4 b,-a) \\
& G^{i}(a, 4 b) \rightarrow G(-a, 4 b) \\
& G^{\circ}(a, 4 b) \rightarrow G(-4 b, a) \\
& \text { 7. What shep peimage of } \mathrm{C}(13 x-12-x-2)^{2} \\
& C^{\prime}(3 x-12,-y-2) \rightarrow((-y-2,-(3 x-12) \rightarrow C((-y-2,-3 x+12) \\
& \left.C^{\prime}(3 x-12,-y-2)-1(1) \rightarrow+(-12, y+2)-(3 x-12),-(-y-2)\right) \rightarrow((-3 x+12, y+2) \\
& C^{\prime}(3 x-12,-y-2) \rightarrow((-(-y-2), 3 x-12) \\
& \rightarrow C(y+2,3 x-12)
\end{aligned}
$$

1. Write a rule that would map $\triangle A B C$ onto $\triangle A^{\prime} B^{\prime} C^{\prime}$
$(x, y) \rightarrow(-y, x) 90^{\circ}$ rotation counterclockwise
$T(x, y)->(-y, x)$ 2. What
result.

90 degree rotation or 270 degree clockwise rotation
270° clockwise is the same as 90° counterclockute

