\qquad

Review for Final Exam

From Chapter 1

1) Find the domain $\&$ range:
a) $f(x)=-(x-3)^{2}-4$
b) $f(x)=2 \sqrt{9-(x-3)^{2}}$
c) $f(x)=|3 \sqrt{x+8}-4|$

D: \qquad D: \qquad D: \qquad
R: \qquad
R: \qquad

R: \qquad

From Chapter 1 \& 2
2) Identify the increasing/decreasing intervals, local \& absolute max/min, and state the end behavior:
a) $f(x)=-4(x+3)^{2}(x-4)^{3}$
b) $f(x)=(x-3)(x-1)(x+2)$
c) $f(x)=-2 \sqrt{x-4}+5$

Inc: \qquad Inc: \qquad Inc: \qquad
Dec: \qquad
Dec: \qquad

Dec: \qquad
local max: \qquad local min: \qquad local max: \qquad local min: \qquad local max: \qquad local min: \qquad
abs max: \qquad abs min: \qquad abs max: \qquad abs min: \qquad abs max: \qquad abs min: \qquad
LEB:
REB:
LEB:
REB:
LEB:
REB:

From Chapter 2
3) Identify the asymptotes and write limit statements for each of the following:
a) $f(x)=\frac{2(x+2)}{x-5}$
b) $y=\frac{-2}{x+3}$

HA: \qquad VA: \qquad
HA: \qquad
VA: \qquad
$\lim _{x \rightarrow--} f(x)=$

$$
\lim _{x \rightarrow-\ldots} f(x)=
$$

$$
\lim _{x \rightarrow--} f(x)=
$$

$$
\lim _{x \rightarrow---} f(x)=
$$

$$
\lim _{x \rightarrow-\ldots} f(x)=
$$

$$
\lim _{x \rightarrow----} f(x)=
$$

$$
\lim _{x \rightarrow-} f(x)=
$$

$$
\lim _{x \rightarrow \ldots} f(x)=
$$

\qquad
4) Write an exponential model and find the requested information for each of the following:
a) The number of students taking AP Calculus at HSHS increases at a rate of 23% each year. If 22 students took the class at time $t=0$, how many will take it after 5 years? How long will it take to reach enrollment of 100 students in AP Calculus?

Model: \qquad $=$ \qquad
$1^{\text {st }}$ answer: \qquad
$2^{\text {nd }}$ answer: \qquad
b) The value of a recently purchased car decreases at a rate of 6% each year. I the purchase price of the car was $\$ 20,890$, how long will it take to reach half of its original purchase price? How much will the car be worth after 3 years?

Model: \qquad $=$ \qquad
$1^{\text {st }}$ answer: \qquad
$2^{\text {nd }}$ answer: \qquad
c) A certain element has a half life of 29 days. If 37 grams of this element were present initially, how much will remain after 198 days? How long will it take for half the original sample to remain?

Model: \qquad $=$ \qquad
$1^{\text {st }}$ answer: \qquad $2^{\text {nd }}$ answer: \qquad

From Chapter 3

5) Given the logistic growth model below identify the requested information:

a) $y=\frac{207}{1+8 e^{-t}}$
b) $f(x)=\frac{4000}{1+399 e^{-2 t}}$

Equations
of the H.A.: __ =__ \& $=$
Equations

Initial value: \qquad of the H.A.: __ $=$ \qquad \& \qquad
\qquad

Maximum sustainable population: \qquad
Initial value: \qquad
Maximum sustainable population: \qquad

From Chapter 3
6) Solve each of the following equations for the EXACT solution (use calculator to verify only):
a) $9^{x}=4^{5 x}$
b) $17^{x} \cdot \frac{4}{17^{2}}=2^{6 x}$

$$
x=
$$

\qquad

$$
x=
$$

7) Evaluate each of the following:
a) $\tan \left(\frac{4 \pi}{5}\right)$
b) $\cot \left(\frac{4 \pi}{5}\right)$
c) $\sin \left(\frac{13 \pi}{7}\right)$
d) $\csc \left(\frac{13 \pi}{7}\right)$
e) $\sec 67^{\circ}$

From Chapter 4 \& Chapter 5
8) Solve each of the following trigonometric equations on the interval $[0,2 \pi)$. (Round to nearest hundredth)
a) $\sin \theta=\frac{2}{3}$
b) $\sec \theta=-7$
c) $12 \sin ^{2} x+17 \sin x=7$
d) $2+2 \sin x=3 \cos ^{2} x$
$\theta=$ \qquad $\theta=$ \qquad
\qquad $x=$ \qquad

From Chapter 4
9) A ladder leans against a wall. The base of the ladder is 71in from the bottom of the wall, and reaches a height of 104 in . Determine the length of the ladder and the angle of elevation created by the ladder and the floor.

From Chapter 4
10) A bike has wheels with a radius of 16in. If the wheels are rotating at 47rpm determine the speed of the bike in $\mathbf{~ m p h}(5280 \mathrm{ft}=1 \mathrm{mi})$

Length of ladder = \qquad \angle of elevation $=$ \qquad \circ
speed $=$ \qquad mph

From Chapter 4
11) Given the information regarding arc length (s), radius (\mathbf{r}), and the central angle (θ) fill in the table:

\boldsymbol{s}	\boldsymbol{R}	$\boldsymbol{\theta}$
4π		$2 \pi / 7$
	55 m	$5 \pi / 11$
$39 \pi \mathrm{~cm}$	71 cm	

From Chapter 4
12) A boat travels on a bearing of 304° at 32 knots for 3.4 hours. If the boat then changes direction to 214° and slows to 30 knots for 2.1 hours what is the distance of the boat from the start point to the end point? What is the bearing of the boat at the end of its trip?

Distance from
start to finish: \qquad
Bearing of boat
at end of trip: \qquad \bigcirc

From Chapter 6
13) A plane travels on a bearing of 219° at 400 mph . If a wind is blowing at a bearing of 211° at 45 mph write a vector representing the velocity produced by the plane alone, a vector representing the velocity of the wind alone, and the resultant velocity representing the actual velocity of the plane. Then determine the actual speed of the plane and the direction angle of the plane (not the bearing).
$\mathbf{p}=$ \qquad , __
$\mathbf{w}=$ \qquad , \qquad
\qquad actual speed $=$ \qquad mph

$$
\theta=
$$

From Chapter 6
14) Given vector $v=\langle-3,-11\rangle \& u=\langle-2,7\rangle$ find projvu $^{v} u$ and then write u as the sum of two orthogonal vectors (one of which is projvu).
$\operatorname{proj}_{\mathbf{v}} \mathbf{u}=\langle$ \qquad ,
$\mathbf{u}=\langle\longrightarrow$, \qquad $\rangle+\langle$ \qquad

From Chapter 9
15) In an arithmetic sequence $a_{3}=54099$ and $a_{7}=$ 53655. Write an explicit and recursive definition of the sequence, find a18 and the sum of the first 18 terms.
\qquad a18 = \qquad
(explicit)
\qquad $S_{18}=$ \qquad
(recursive)

From Chapter 9
16) In a geometric sequence $g_{4}=16807$ and $g_{9}=1$. Write an explicit $\&$ recursive definition. Find g_{11} and the sum of the first 11 terms. If the series converges find the sum of the infinite sequence.
$\mathbf{g}_{\mathrm{n}}=$ \qquad
(explicit)
$\mathrm{g}_{1}=$ \qquad $\mathrm{g}_{\mathrm{n}}=$ \qquad

$$
g_{11}=
$$ (recursive)

From Chapter 1
17) Identify the transformations applied to each of the 12 basic functions below, then state the domain, range, and whether it is or is not one-to-one:
a) $f(x)=-3|x-3|+5$
b) $f(x)=\frac{7}{2-x}$
c) $f(x)=-\sqrt{4 x}+11$
transformations:
transformations:
transformations:
\qquad
D: \qquad D: \qquad D: \qquad
R: \qquad R: \qquad R: \qquad
1-to-1? \qquad 1-to-1? \qquad 1-to-1? \qquad

From Chapter 2
18) Sketch each of the following polynomials (include all intercepts) and write a statement for their end behavior:
(Hint - Rational Root Theorem)
a) $f(x)=-x^{2}(x+3)^{3}(x-4)$
b) $f(x)=x^{3}+x^{2}-16 x-16$
c) $f(x)=x^{3}-7 x^{2}+11 x-5$
x-int(s): \qquad
y-int: \qquad
x-int(s): \qquad
y-int: \qquad
x-int(s): \qquad
y-int: \qquad

From Chapter 2
19) Use the graph of $f(x)$ at the right to complete each of the following limit statements

$$
\lim _{x \rightarrow-\infty} f(x)=
$$

$$
\lim _{x \rightarrow-3^{-}} f(x)=
$$

$\lim _{x \rightarrow-3^{+}} f(x)=$
$\lim _{x \rightarrow 3^{-}} f(x)=$ \qquad

$$
\lim _{x \rightarrow 3^{+}} f(x)=
$$

$\lim _{x \rightarrow \infty} f(x)=$ \qquad

20) Determine the holes, intercepts, \& asymptotes for each of the following:
a) $f(x)=\frac{x^{2}-4}{x^{2}-9}$
b) $f(x)=\frac{3 x^{2}-x-4}{9 x^{3}+9 x^{2}-16 x-16}$
c) $f(x)=\frac{4 x^{2}-x-5}{x-3}$

Hole(s): \qquad (\qquad , __)

Hole(s): (\qquad (__, __)
Hole(s): \qquad , __)
\qquad ,
x-int: (\qquad) (\qquad
\qquad
y-int: (\qquad)
Eqs of ALL
Asymptotes: \qquad
x-int: (\qquad) \qquad
\qquad _)
y-int: (\qquad
Eqs of ALL
Asymptotes: \qquad
x-int: \qquad)
\qquad
\qquad y-int: \qquad
Eqs of ALL
Asymptotes: \qquad

From Chapter 3
21) Which of the following are equivalent?
i. $\frac{1}{2}+\log 3$
ii. $\frac{1}{2} \log 90$
iii. $\log 3 \sqrt{10}$

From Chapter 3
22) Simplify: $\frac{\log 27}{\log 81}$
A. $\log \frac{1}{3}$
B. $\frac{1}{3}$
C. $\log 27-\log 81$
D. $\frac{3}{4}$
E. Cannot determine without calculator

From Chapter 3

From Chapter 3
24) Which of the following is the value of $\log _{4} \frac{4}{\sqrt[6]{64}}$? A. $-\frac{1}{2} \quad$ B. $\frac{1}{2} \quad$ C. $\frac{1}{3} \quad$ D. $-\frac{1}{3} \quad$ E. None of these

From Chapter 3
25) Which of the following is the value of $-\log _{\frac{1}{3}} 243$?
A. $-1 / 5$
B. -5
C. 5
D. $1 / 5$
E. None of these

From Chapter 3
26) Given that $\log _{\sqrt[5]{64}} x=\frac{5}{3}$, what is the value of x ? $\begin{array}{lllll}\text { A. } 81 & \text { B. } 3 / 2 & \text { C. } 9 & \text { D. } 36 & \text { E. None of these }\end{array}$

From Chapter 4
27) Find the amplitude, period, phase shift, and vertical shift of each of the following:
a) $f(x)=5 \sin (3 x-\pi)+4$
b) $f(x)=-3 \cos (1 / 2 x-\pi / 2)-1$
$a m p=$ \qquad

$$
\mathrm{pd}=
$$

$a m p=$ \qquad
$\mathrm{pd}=$ \qquad
P.S. = \qquad
V.S. $=$ \qquad
P.S. = \qquad
V.S.= \qquad

From Chapter 6
28) Write the rectangular equation as a polar equation $2 x^{2}+2 y^{2}=5 y$

From Chapter 6
29) Eliminate the parameter and describe the resulting graph:
a) $x=4 \cos ^{2} \theta \quad \& \quad y=2 \sin \theta$
b) $x=e^{t} \quad \& \quad y=e^{-t}$

From Chapter 6
30) Convert the following polar points to rectangular coordinates.
a) $\left(6, \frac{\pi}{2}\right)$
a) $(-3,3)$
b) $\left(-1, \frac{7 \pi}{4}\right)$
b) $\left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$

From Chapter 6
31) Convert the following rectangular points to polar coordinates

From Chapter 4
32) Name one positive and one negative angle co-terminal with each of the following angles:
a) $\frac{2 \pi}{3}$
b) 315°
(+) \qquad radians
(-) \qquad radians
(+) \qquad \square°
(-) \qquad

From Chapter 4
33) Evaluate each of the following:
a) $\cot \left(\frac{5 \pi}{4}\right)=$ \qquad b) $\sin \left(330^{\circ}\right)=$
c) $\sec \left(\frac{5 \pi}{6}\right)=$
d) $\cos \left(-300^{\circ}\right)=$ \qquad
е) $\csc \left(-\frac{3 \pi}{2}\right)=$ \qquad
f) $\sec \left(90^{\circ}\right)=$ \qquad
g) $\tan (5 \pi)=$ \qquad

From Chapter 4

34)Find the exact value of each of the following, write all angle measures in radians, if the expression is undefined write "undefined":
a) $\arctan (1)$
b) $\sin ^{-1}\left(-\frac{1}{2}\right)$
c) $\cos ^{-1}\left(\frac{2}{\sqrt{3}}\right)$
d) $\arcsin \left(\frac{\sqrt{2}}{2}\right)$
35) Determine the quadrant in which θ lies given that $\sin \theta>0 \& \sec \theta<0$

Quadrant: \qquad

